論文 - 清水 昌平

分割表示 >> /  全件表示  39 件中 1 - 39 件目
  1. Causal Discovery with Multi-Domain LiNGAM for Latent Factors,Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21),2021年,Yan Zeng, Shohei Shimizu, Ruichu Cai, Feng Xie, Michio Yamamoto, Zhifeng Hao

    研究論文(国際会議プロシーディングス),共著

  2. Causal Additive Models with Unobserved Variables,Proc. 37th Conference on Uncertainty in Artificial Intelligence 2021 (UAI2021),2021年,Takashi Nicholas Maeda, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  3. RCD: Repetitive causal discovery of linear non-Gaussian acyclic models with latent confounders,JMLR Workshop and Conference Proceedings, AISTATS2020 (Proc. 23rd International Conference on Artificial Intelligence and Statistics),2020年05月,T. N. Maeda, S. Shimizu

    研究論文(学術雑誌),単著

  4. Causal models and prediction in cell line perturbation experiments,BMC Bioinformatics,2025年01月,JP Long, Y Yang, S Shimizu, T Pham, KA Do

    ,共著

  5. Counterfactual Explanations of Black-box Machine Learning Models using Causal Discovery with Applications to Credit Rating,Proc. Int. Joint Conf. on Neural Networks (IJCNN2024),2024年09月,D. Takahashi, S. Shimizu, T. Tanaka

    ,共著

  6. Multi-Domain and Multi-View Oriented Deep Neural Network for Sentiment Analysis in Large Language Models,2024 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics,2024年08月,Keito Inoshita, Xiaokang Zhou, Shohei Shimizu

    DOI:https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics62450.2024.00045,研究論文(国際会議プロシーディングス),共著

  7. Use of prior knowledge to discover causal additive models with unobserved variables and its application to time series data,Behaviormetrika,2024年08月,Takashi Nicholas Maeda

    DOI:https://doi.org/10.1007/s41237-024-00238-1,研究論文(学術雑誌),共著

  8. Scalable Counterfactual Distribution Estimation in Multivariate Causal Models,Proceedings of the Third Conference on Causal Learning and Reasoning, PMLR,2024年03月,Thong Pham, Shohei Shimizu, Hideitsu Hino, Tam Le

    研究論文(国際会議プロシーディングス),共著

  9. Novel MITM attack scheme based on built-in negotiation for blockchain-based digital twins,Digital Communications and Networks,2023年12月,Xin Liu, Rui Zhou, Shohei Shimizu, Rui Chong, Qingguo Zhou, Xiaokang Zhou

    DOI:https://doi.org/10.1016/j.dcan.2023.11.011,研究論文(学術雑誌),共著

  10. Structure Learning for Groups of Variables in Nonlinear Time-Series Data with Location-Scale Noise,Proceedings of the 2023 Causal Analysis Workshop Series, PMLR ,2023年11月,Genta Kikuchi, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  11. Linkages among the Foreign Exchange, Stock, and Bond Markets in Japan and the United States,Proceedings of the 2023 Causal Analysis Workshop Series, PMLR,223巻 (頁 1 ~ 19) ,2023年11月,Yi Jiang, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  12. Information theoretic learning-enhanced dual-generative adversarial networks with causal representation for robust OOD generalization,IEEE Transactions on Neural Networks and Learning Systems,2023年11月,Xiaokang Zhou, Xuzhe Zheng, Tian Shu, Wei Liang, I Kevin, Kai Wang, Lianyong Qi, Shohei Shimizu, Qun Jin

    DOI:https://doi.org/10.1109/TNNLS.2023.3330864,研究論文(学術雑誌),共著

  13. BiLSTM and VAE enhanced multi-task neural network for trust-aware e-commerce product analysis.,Proc. TrustCom 2023 (The 22nd IEEE International Conference on Trust, Security and Privacy in Computing and Communications),2023年11月,Shusuke Wani, Xiaokang Zhou, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  14. Digital Twin Enhanced Federated Reinforcement Learning With Lightweight Knowledge Distillation in Mobile Networks,IEEE Journal on Selected Areas in Communications,41巻 10号 (頁 3191 ~ 3211) ,2023年10月,Xiaokang Zhou, Xuzhe Zheng, Xuesong Cui, Jiashuai Shi, Wei Liang, Zheng Yan, Laurance T Yang, Shohei Shimizu, I Kevin, Kai Wang

    DOI:https://doi.org/10.1109/JSAC.2023.3310046,研究論文(学術雑誌),共著

  15. Causal Discovery for Non-stationary Non-linear Time Series Data Using Just-In-Time Modeling,Proceedings of the Second Conference on Causal Learning and Reasoning, PMLR,213巻 (頁 880 ~ 894) ,2023年08月,Daigo Fujiwara, Kazuki Koyama, Keisuke Kiritoshi, Tomomi Okawachi, Tomonori Izumitani, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  16. Prospects of Continual Causality for Industrial Applications,Proceedings of The First AAAI Bridge Program on Continual Causality, PMLR,208巻 (頁 18 ~ 24) ,2023年06月,Daigo Fujiwara, Kazuki Koyama, Keisuke Kiritoshi, Tomomi Okawachi, Tomonori Izumitani, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  17. Hierarchical Federated Learning With Social Context Clustering-Based Participant Selection for Internet of Medical Things Applications,IEEE Transactions on Computational Social Systems,2023年04月,Xiaokang Zhou, Xiaozhou Ye, I Kevin, Kai Wang, Wei Liang, Nirmal Kumar C Nair, Shohei Shimizu, Zheng Yan, Qun Jin

    DOI:10.1109/TCSS.2023.3259431,,共著

  18. Python package for causal discovery based on LiNGAM,Journal of Machine Learning Research,24巻 (頁 1 ~ 8) ,2023年01月,Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, Shohei Shimizu

    研究論文(学術雑誌),共著

    担当区分:責任著者  

  19. Kento Uemura, Takuya Takagi, Kambayashi Takayuki, Hiroyuki Yoshida, Shohei Shimizu,Proceedings of 2022 International Joint Conference on Neural Networks (IJCNN2022),2022年07月,Kazuhi Honjo, Xiaokang Zhou, Shohei Shimizu

    DOI:https://doi.org/10.1109/IJCNN55064.2022.9892599,研究論文(国際会議プロシーディングス),共著

  20. Causal discovery for linear mixed data,Proceedings of the First Conference on Causal Learning and Reasoning, PMLR,177巻 (頁 994 ~ 1009) ,2022年06月,Yan Zeng, Shohei Shimizu, Hidetoshi Matsui, Fuchun Sun

    研究論文(国際会議プロシーディングス),共著

  21. A multivariate causal discovery based on post-nonlinear model,Proceedings of the First Conference on Causal Learning and Reasoning, PMLR,177巻 (頁 826 ~ 839) ,2022年06月,Kento Uemura, Takuya Takagi, Kambayashi Takayuki, Hiroyuki Yoshida, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  22. Chemical-Mediated Microbial Interactions Can Reduce the Effectiveness of Time-Series-Based Inference of Ecological Interaction Networks,International Journal of Environmental Research and Public Health,2022年01月,Kenta Suzuki, Masato S Abe, Daiki Kumakura, Shinji Nakaoka, Fuki Fujiwara, Hirokuni Miyamoto, Teruno Nakaguma, Mashiro Okada, Kengo Sakurai, Shohei Shimizu, Hiroyoshi Iwata, Hiroshi Masuya, Naoto Nihei, Yasunori Ichihashi

    研究論文(学術雑誌),共著

  23. Hierarchical Adversarial Attacks Against Graph Neural Network Based IoT Network Intrusion Detection System,IEEE Internet of Things Journal,2021年11月,Xiaokang Zhou, Wei Liang, Weimin Li, Ke Yan, Shohei Shimizu, I Kevin, Kai Wang

    研究論文(学術雑誌),共著

  24. Repetitive causal discovery of linear non-Gaussian acyclic models in the presence of latent confounders,International Journal of Data Science and Analytics,2021年09月,Takashi Nicholas Maeda, Shohei Shimizu

    研究論文(学術雑誌),単著

  25. Nonlinear Causal Discovery for High-Dimensional Deterministic Data,IEEE Transactions on Neural Networks and Learning Systems,2021年,Yan Zeng, Zhifeng Hao, Ruichu Cai, Feng Xie, Libo Huang, Shohei Shimizu

    DOI:https://doi.org/10.1109/TNNLS.2021.3106111,研究論文(学術雑誌),共著

  26. Estimating individual-level optimal causal interventions combining causal models and machine learning models,Proceedings of The KDD'21 Workshop on Causal Discovery, PMLR,2021年,Keisuke Kiritoshi, Tomonori Izumitani, Kazuki Koyama, Tomomi Okawachi, Keisuke Asahara, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  27. Siamese Neural Network Based Few-Shot Learning for Anomaly Detection in Industrial Cyber-Physical Systems,IEEE Transactions on Industrial Informatics,2020年12月,Xiaokang Zhou, Wei Liang, Shohei Shimizu, Jianhua Ma, Qun Jin

    研究論文(学術雑誌),共著

  28. Estimation of post-nonlinear causal models using autoencoding structure,Proc. 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP2020),2020年05月,K. Uemura, S. Shimizu

    研究論文(国際会議プロシーディングス),共著

  29. B4SDC: A Blockchain System for Security Data Collection in MANETs,,IEEE Transactions on Big Data,2020年03月,Gao Liu, Huidong Dong, Zheng Yan, Xiaokang Zhou, Shohei Shimizu

    研究論文(学術雑誌),共著

  30. Multi-Modality Behavioral Influence Analysis for Personalized Recommendations in Health Social Media Environment,IEEE Transactions on Computational Social Systems,2019年10月,X. Zhou, W. Liang, I. Kevin, K. Wang, S. Shimizu

    DOI:https://doi.org/10.1109/TCSS.2019.2918285,研究論文(学術雑誌),共著

  31. Analysis of cause-effect inference by comparing regression errors,PeerJ Computer Science,2019年01月,Patrick Blöbaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schölkopf

    研究論文(学術雑誌),共著

  32. Personalization recommendation algorithm based on trust correlation degree and matrix factorization,IEEE Access,2019年01月,Weimin Li, Xiaokang Zhou, Shohei Shimizu, Mingjun Xin, Jiulei Jiang, Honghao Gao, Qun Jin

    研究論文(学術雑誌),共著

  33. A novel personalized recommendation algorithm based on trust relevancy degree,Proc. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech),2018年08月,Weimin Li, Heng Zhu, Xiaokang Zhou, Shohei Shimizu, Mingjun Xin, Qun Jin

    研究論文(国際会議プロシーディングス),共著

  34. A novel principle for causal inference in data with small error variance,JMLR Workshop and Conference Proceedings, AISTATS2018 (Proc. 21st International Conference on Artificial Intelligence and Statistics),2018年04月,Patrick Bloebaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schoelkopf

    研究論文(国際会議プロシーディングス),共著

  35. Learning instrumental variables with structural and non-Gaussianity assumptions,Journal of Machine Learning Research,18巻 (頁 1 ~ 49) ,2017年11月,Ricardo Silva,Shohei Shimizu

    研究論文(学術雑誌),共著

  36. Estimation of interventional effects of features on prediction,Proc. 2017 IEEE Machine Learning for Signal Processing Workshop (MLSP2017),2017年09月,Patrick Blobaum,Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  37. A novel principle for causal inference in data with small error variance,Proc. 25 th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN2017),2017年04月,Patrick Blobaum, Shohei Shimizu, Takashi Washio

    研究論文(国際会議プロシーディングス),共著

  38. Error asymmetry in causal and anticausal regression,Behaviormetrika,2017年04月,Patrick Blobaum,Takashi Washio,Shohei Shimizu

    研究論文(学術雑誌),共著

  39. Visualizing Shiga Prefecture using RESAS: cloud-based analysis system with government open big data,Proc. 2nd International Conference on Big Data, Cloud Computing, and Data Science (BCD2017),2017年,Jong chan Lee,Tetsuto Himeno,Shohei Shimizu,Takuma Tanaka,Akimichi Takemura

    研究論文(国際会議プロシーディングス),共著

このページの先頭へ▲