論文 - 清水 昌平

分割表示  39 件中 1 - 20 件目  /  全件表示 >>
  1. Causal Discovery with Multi-Domain LiNGAM for Latent Factors,Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21),2021年,Yan Zeng, Shohei Shimizu, Ruichu Cai, Feng Xie, Michio Yamamoto, Zhifeng Hao

    研究論文(国際会議プロシーディングス),共著

  2. Causal Additive Models with Unobserved Variables,Proc. 37th Conference on Uncertainty in Artificial Intelligence 2021 (UAI2021),2021年,Takashi Nicholas Maeda, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  3. RCD: Repetitive causal discovery of linear non-Gaussian acyclic models with latent confounders,JMLR Workshop and Conference Proceedings, AISTATS2020 (Proc. 23rd International Conference on Artificial Intelligence and Statistics),2020年05月,T. N. Maeda, S. Shimizu

    研究論文(学術雑誌),単著

  4. Causal models and prediction in cell line perturbation experiments,BMC Bioinformatics,2025年01月,JP Long, Y Yang, S Shimizu, T Pham, KA Do

    ,共著

  5. Counterfactual Explanations of Black-box Machine Learning Models using Causal Discovery with Applications to Credit Rating,Proc. Int. Joint Conf. on Neural Networks (IJCNN2024),2024年09月,D. Takahashi, S. Shimizu, T. Tanaka

    ,共著

  6. Multi-Domain and Multi-View Oriented Deep Neural Network for Sentiment Analysis in Large Language Models,2024 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics,2024年08月,Keito Inoshita, Xiaokang Zhou, Shohei Shimizu

    DOI:https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics62450.2024.00045,研究論文(国際会議プロシーディングス),共著

  7. Use of prior knowledge to discover causal additive models with unobserved variables and its application to time series data,Behaviormetrika,2024年08月,Takashi Nicholas Maeda

    DOI:https://doi.org/10.1007/s41237-024-00238-1,研究論文(学術雑誌),共著

  8. Scalable Counterfactual Distribution Estimation in Multivariate Causal Models,Proceedings of the Third Conference on Causal Learning and Reasoning, PMLR,2024年03月,Thong Pham, Shohei Shimizu, Hideitsu Hino, Tam Le

    研究論文(国際会議プロシーディングス),共著

  9. Novel MITM attack scheme based on built-in negotiation for blockchain-based digital twins,Digital Communications and Networks,2023年12月,Xin Liu, Rui Zhou, Shohei Shimizu, Rui Chong, Qingguo Zhou, Xiaokang Zhou

    DOI:https://doi.org/10.1016/j.dcan.2023.11.011,研究論文(学術雑誌),共著

  10. Structure Learning for Groups of Variables in Nonlinear Time-Series Data with Location-Scale Noise,Proceedings of the 2023 Causal Analysis Workshop Series, PMLR ,2023年11月,Genta Kikuchi, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  11. Linkages among the Foreign Exchange, Stock, and Bond Markets in Japan and the United States,Proceedings of the 2023 Causal Analysis Workshop Series, PMLR,223巻 (頁 1 ~ 19) ,2023年11月,Yi Jiang, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  12. Information theoretic learning-enhanced dual-generative adversarial networks with causal representation for robust OOD generalization,IEEE Transactions on Neural Networks and Learning Systems,2023年11月,Xiaokang Zhou, Xuzhe Zheng, Tian Shu, Wei Liang, I Kevin, Kai Wang, Lianyong Qi, Shohei Shimizu, Qun Jin

    DOI:https://doi.org/10.1109/TNNLS.2023.3330864,研究論文(学術雑誌),共著

  13. BiLSTM and VAE enhanced multi-task neural network for trust-aware e-commerce product analysis.,Proc. TrustCom 2023 (The 22nd IEEE International Conference on Trust, Security and Privacy in Computing and Communications),2023年11月,Shusuke Wani, Xiaokang Zhou, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  14. Digital Twin Enhanced Federated Reinforcement Learning With Lightweight Knowledge Distillation in Mobile Networks,IEEE Journal on Selected Areas in Communications,41巻 10号 (頁 3191 ~ 3211) ,2023年10月,Xiaokang Zhou, Xuzhe Zheng, Xuesong Cui, Jiashuai Shi, Wei Liang, Zheng Yan, Laurance T Yang, Shohei Shimizu, I Kevin, Kai Wang

    DOI:https://doi.org/10.1109/JSAC.2023.3310046,研究論文(学術雑誌),共著

  15. Causal Discovery for Non-stationary Non-linear Time Series Data Using Just-In-Time Modeling,Proceedings of the Second Conference on Causal Learning and Reasoning, PMLR,213巻 (頁 880 ~ 894) ,2023年08月,Daigo Fujiwara, Kazuki Koyama, Keisuke Kiritoshi, Tomomi Okawachi, Tomonori Izumitani, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  16. Prospects of Continual Causality for Industrial Applications,Proceedings of The First AAAI Bridge Program on Continual Causality, PMLR,208巻 (頁 18 ~ 24) ,2023年06月,Daigo Fujiwara, Kazuki Koyama, Keisuke Kiritoshi, Tomomi Okawachi, Tomonori Izumitani, Shohei Shimizu

    研究論文(国際会議プロシーディングス),共著

  17. Hierarchical Federated Learning With Social Context Clustering-Based Participant Selection for Internet of Medical Things Applications,IEEE Transactions on Computational Social Systems,2023年04月,Xiaokang Zhou, Xiaozhou Ye, I Kevin, Kai Wang, Wei Liang, Nirmal Kumar C Nair, Shohei Shimizu, Zheng Yan, Qun Jin

    DOI:10.1109/TCSS.2023.3259431,,共著

  18. Python package for causal discovery based on LiNGAM,Journal of Machine Learning Research,24巻 (頁 1 ~ 8) ,2023年01月,Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, Shohei Shimizu

    研究論文(学術雑誌),共著

    担当区分:責任著者  

  19. Kento Uemura, Takuya Takagi, Kambayashi Takayuki, Hiroyuki Yoshida, Shohei Shimizu,Proceedings of 2022 International Joint Conference on Neural Networks (IJCNN2022),2022年07月,Kazuhi Honjo, Xiaokang Zhou, Shohei Shimizu

    DOI:https://doi.org/10.1109/IJCNN55064.2022.9892599,研究論文(国際会議プロシーディングス),共著

  20. Causal discovery for linear mixed data,Proceedings of the First Conference on Causal Learning and Reasoning, PMLR,177巻 (頁 994 ~ 1009) ,2022年06月,Yan Zeng, Shohei Shimizu, Hidetoshi Matsui, Fuchun Sun

    研究論文(国際会議プロシーディングス),共著

このページの先頭へ▲